A comprehensive analysis of the NADP-malic enzyme gene family of Arabidopsis.

نویسندگان

  • Mariel C Gerrard Wheeler
  • Marcos A Tronconi
  • María F Drincovich
  • Carlos S Andreo
  • Ulf-Ingo Flügge
  • Verónica G Maurino
چکیده

The Arabidopsis (Arabidopsis thaliana) genome contains four genes encoding putative NADP-malic enzymes (MEs; AtNADP-ME1-ME4). NADP-ME4 is localized to plastids, whereas the other three isoforms do not possess any predicted organellar targeting sequence and are therefore expected to be cytosolic. The plant NADP-MEs can be classified into four groups: groups I and II comprising cytosolic and plastidic isoforms from dicots, respectively; group III containing isoforms from monocots; and group IV composed of both monocots and dicots, including AtNADP-ME1. AtNADP-MEs contained all conserved motifs common to plant NADP-MEs and the recombinant isozymes showed different kinetic and structural properties. NADP-ME2 exhibits the highest specific activity, while NADP-ME3 and NADP-ME4 present the highest catalytic efficiency for NADP and malate, respectively. NADP-ME4 exists in equilibrium of active dimers and tetramers, while the cytosolic counterparts are present as hexamers or octamers. Characterization of T-DNA insertion mutant and promoter activity studies indicates that NADP-ME2 is responsible for the major part of NADP-ME activity in mature tissues of Arabidopsis. Whereas NADP-ME2 and -ME4 are constitutively expressed, the expression of NADP-ME1 and NADP-ME3 is restricted by both developmental and cell-specific signals. These isoforms may play specific roles at particular developmental stages of the plant rather than being involved in primary metabolism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Codon bias patterns in photosynthetic genes of halophytic grass Aeluropus littoralis

Codon bias refers to the differences in the frequency of occurrence of synonymous codons in coding DNA. Pattern of codon and optimum codon utilization is significantly different between the lives. This difference is due to the long term function of natural selection and evolution process. Genetics drift, mutation and regulation of gene expression are the main reasons for codon bias. In this stu...

متن کامل

Four rice genes encoding NADP malic enzyme exhibit distinct expression profiles.

In plants, the NADP malic enzymes (NADP-MEs) are encoded by small gene families. These NADP-ME gene families are relatively well described in C4 plants but not well studied in C3 plants. In this study, we investigated the NADP-ME gene family in a model C3 monocot plant (rice, Oryza sativa) based on its recently released genomic DNA sequence. We found that the rice NADP-ME family is composed of ...

متن کامل

Analysis of knockout mutants suggests that Arabidopsis NADP-MALIC ENZYME2 does not play an essential role in responses to oxidative stress of intracellular or extracellular origin.

NADPH is a pivotal molecule in oxidative stress, during which it is potentially produced by several cytosolic NADP-linked dehydrogenases. This study investigated the response and functional importance of the major leaf cytosolic NADP-malic enzyme in Arabidopsis (NADP-ME2) during oxidative stress. Data from both microarray and targeted quantitative PCR analyses showed that NADP-ME2 transcripts a...

متن کامل

Isolation and molecular characterization of the RecQsim gene in Arabidopsis, rice (Oryza sativa) and rape (Brassica napus)

In any organism that reproduces sexually, DNA Recombination plays vital roles in the generation of allelic diversity as well as in preservation of genome fidelity. Genome fidelity is particularly important in plants because mutations occurring during the development of flowering plants are heritable and can be passed onto the next generation. One of the gene families that play crucial roles in ...

متن کامل

Gene transcriptomic profile in arabidopsis thaliana mediated by radiation-induced bystander effects

Background: The in vivo radiation-induced bystander effects (RIBE) at the developmental, genetic, and epigenetic levels have been well demonstrated using model plant Arabidopsis thaliana (A. thaliana). However, the mechanisms underlying RIBE in plants are not clear, especially lacking a comprehensive knowledge about the genes and biological pathways involved in the RIBE in plants. Materials and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 139 1  شماره 

صفحات  -

تاریخ انتشار 2005